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ABSTRACT 

To date, no specific estimate of R0 for SARS-CoV-2 is available for healthcare settings. Using inter-

individual contact data, we highlight that R0 estimates from the community cannot translate directly 

to healthcare settings, with pre-pandemic R0 values ranging 1.3-7.7 in three illustrative healthcare 

institutions. This has implications for nosocomial Covid-19 control. 
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In the context of the current Covid-19 pandemic, the basic reproduction number R0 has been 

recognized as a key parameter to characterize epidemic risk and predict spread of SARS-CoV-2, the 

causative virus of Covid-19 infection [1]. R0 describes the average number of secondary cases 

generated by an initial index case in an entirely susceptible population. R0 is determined not only by 

the inherent infectiousness of a pathogen, but also environmental conditions, host contact 

behaviours and other factors that influence transmission. Understanding the evolution of the 

effective reproduction number Rt, which describes R0 as it varies over time, is also essential for 

epidemiological forecasting and to assess the impact of control strategies [2, 3]. 

Over recent months, numerous estimates of R0 for SARS-CoV-2 have been computed through 

analysis of reported infections from countries all over the world [2, 4-6], as well as in specific 

subpopulations, such as individuals aboard the Diamond Princess cruise ship [7]. Published estimates 

mostly range from 2-4. 

However, to date, no estimates of R0 specific to healthcare settings have been published.  

Healthcare institutions are confronted with several urgent and overlapping challenges linked to 

Covid-19. Acute care facilities face unprecedented demand for beds and resources to accommodate 

Covid-19 patients, particularly in intensive care units in high-prevalence regions. Introduction of 

SARS-CoV-2 to healthcare settings can further result in nosocomial outbreaks, with superspreading 

events already reported in some hospitals [8], as was also observed for SARS-CoV and MERS-CoV. In 

addition to risks for patients, whose underlying conditions put them at greater risk of severe 

infection, there is also an important risk of infection among healthcare workers [8]. 

Contacts between individuals are fundamental to the spread of respiratory pathogens like SARS-CoV-

2, and contact patterns in healthcare settings are highly context-specific. Contacts between patients 

and healthcare workers tend to be simultaneously more frequent, longer and more at-risk than 

contacts occurring in the community. This could translate to higher R0 values, as underlined in earlier 
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work on other coronaviruses, in which R0 was estimated to be much higher in hospitals than in the 

community [9]. 

Here, using detailed individual-level contact pattern data from both the community and three 

healthcare institutions in France, we explore how the reproduction number estimated in the 

community may translate to these institutions, and discuss potential consequences for public health. 

METHODS 

Under simplifying assumptions, R0 can be estimated as follows:   

                     

where p is the probability of transmission per minute spent in contact, dCtc is the average contact 

duration (in minutes), nCtc is the average number of contacts per person per day, and dInf is the 

average duration of infectivity (in days): approximately 10 days for Covid-19 [10]. 

Assuming that p and dInf are the same for individuals in the community and in healthcare settings, 

we can translate the previous expression into setting-specific R0 values computed as: 

 In the community:   
         

      
       

 In the healthcare settings:   
         

      
       

where superscripts C and H denote values for community and healthcare settings, respectively. 

The healthcare setting-specific reproduction number may then be estimated from the community-

specific reproduction number and the contact pattern characteristics in both settings, as:  
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NUMERICAL APPLICATION IN THE FRENCH CONTEXT 

Based on detailed inter-individual contact data from France [11], in the community the median 

number of inter-individual contacts per person is     
  = 8 contacts/day and the median duration of 

these contacts ranges from 15 minutes to 1 hour. For simplicity, in the following we use     
  = 30 

minutes. 

The reproduction number for SARS-CoV-2 has been estimated in the French community at values 

ranging from   
  = 2 to 4 [2, 12, 13]. In the following we use   

  = 3.   

These translate to an average transmission risk per minute spent in contact of:  

p = 3 / (8 × 30 × 10) = 0.00125 

Table 1 provides estimates of the healthcare setting-specific reproduction number   
 , depending on 

the average number of daily contacts within the healthcare setting     
 , and the actual value of   

 . 

The mean duration of daily contacts within the healthcare setting     
  is assumed to range from 10 

to 40 minutes. 

THREE ILLUSTRATIVE EXAMPLES 

As an illustration, we used detailed contact data from three different healthcare settings in France 

during the pre-pandemic period to estimate   
  in the absence of control measures specific to Covid-

19:  

 For a 170-bed rehabilitation hospital [14], where     
  = 18 contacts/day and     

  = 34 min, 

the pre-pandemic   
  is estimated as 

  
  = 0.00125 × 34 × 18 × 10 = 7.65 

 For an acute-care geriatric unit [15], where the cumulative time spent in contact with others 

per individual per day was     
  ×     

  = 104 min, the pre-pandemic   
  is estimated as 
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  = 0.00125 × 104 × 10 = 1.3 

 For a 100-bed nursing home [16], where the cumulative time spent in contact per individual 

and per day was     
  ×     

  = 615 min, the pre-pandemic   
  is estimated as 

  
  = 0.00125 × 615 × 10 = 7.7 

DISCUSSION 

Estimating R0 has been an important focus of epidemiological work to understand the transmission 

dynamics and pandemic trajectory of SARS-CoV-2. We highlight here that reproduction numbers 

estimated in the community cannot be translated directly to healthcare settings, where inter-

individual contact patterns are specific to and variable between institutions. 

Health care institutions are at high risk of SARS-CoV-2 importation, from admission of infected 

patients or from visitors or healthcare workers infected in the community. Our estimates of   
  

suggest that, depending on a healthcare facility’s size and structure, the risk of nosocomial spread 

may be much higher or lower than in the general population, with values ranging from 0.4 to 13.3 

(Table 1). 

Our results have implications for Covid-19 infection prevention and control. In healthcare settings 

with estimated low values of pre-pandemic   
 , it is expected that classical barrier measures – 

reducing p, the probability of transmission per minute of contact – may suffice to prevent a majority 

of cases. On the contrary, in healthcare settings where the estimated pre-pandemic   
  is high, it is 

critical to implement additional control measures. These measures could include reducing the 

frequency (    
 ) and duration (    

 ) of contacts (e.g. through limiting patient-patient contacts by 

cancelling social activities and gatherings), limiting patient transfers, or reorganizing human 

resources and provisioning of care within the institution.  
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It should be underlined that this work’s aim is to present a conceptual discussion about R0 in 

healthcare settings. Hence, the elements presented here, and in particular the numerical estimates, 

should be interpreted in light of the following over-simplifications. 

First, Covid-19 infection was simplified by assuming the same duration of infectivity, irrespective of 

the setting. However, in the community, individuals presenting symptoms may isolate themselves 

and stay at home whereas patients of healthcare settings will stay hospitalized. Considering such 

differences would lead to higher estimates of   
 . 

Second, we assumed the same per-minute probability of transmission, irrespective of the setting and 

nature of contacts. However, some hospital contacts, such as those involving close proximity or 

invasive procedures, may pose greater transmission risk than others. Also, a higher concentration of 

severe infections, which may shed more virus [17], and the presence of immunosuppressed 

individuals, may entail a higher transmission probability in hospitals, therefore increasing   
 . 

Third,   
  may differ according to individual characteristics, notably for patients vs. healthcare 

workers. In addition, some individuals may be super-contactors or super-shedders, with a greater 

probability of generating secondary cases if infected. 

Fourth, contact duration and frequency measured during distinct studies in the community and in 

specific healthcare populations are not necessarily comparable.  

Last, our R0 formula assumes random homogenous mixing between individuals in the population. 

However, contact patterns in the general population may depend on age. In addition, hospital 

networks are highly clustered due to ward structure and occupational hierarchies. Computing   
  

values using contact information at the ward level and age structure data should facilitate more 

accurate estimates. Additionally, our formula makes the assumption that transmission risk increases 

linearly with contact duration, which may not be correct, especially for very long contacts. For 
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instance, censoring contacts longer than 1 hour in the data from the first example gives an average 

contact duration within the facility of 15 min, leading to a lower estimated   
  of 3.37.  

In conclusion, pandemic Covid-19 continues to overwhelm healthcare institutions with critically ill 

and highly infectious patients, and nosocomial outbreaks pose great risk to patients and healthcare 

workers alike. Understanding how transmission risk varies between community and healthcare 

settings, and within and between different healthcare institutions such as hospitals and long-term 

care facilities, is fundamental to better predict risks of nosocomial outbreaks and inform appropriate 

infection control measures. 
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Table 1 – Range of estimated reproduction numbers (  
 ) values obtained when     

  ranges from 10 

to 40 minutes, for different assumed values of   
  (rows) and     

  (columns) 

  Average number of daily contacts in the healthcare setting (    
 ) 

  5 10 15 18 20 

Assumed value for 

basic reproduction 

number in the 

community (  
 ) 

2 0.4-1.7 0.8-3.3 1.3-5 1.5-6 1.7-6.7 

2.5 0.5-2.1 1-4.2 1.6-6.3 1.9-7.5 2.1-8.3 

3 0.6-2.5 1.3-5 1.9-7.5 2.3-9 2.5-10 

3.5 0.7-2.9 1.5-5.8 2.2-8.8 2.6-10.5 2.9-11.7 

4 0.8-3.3 1.7-6.7 2.5-10 3-12 3.3-13.3 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article-abstract/doi/10.1093/cid/ciaa682/5849067 by guest on 10 June 2020


