M. Alexander, Aging, bioavailability, and overestimation of risk from environmental pollutants, Environ. Sci. Technol, vol.34, pp.4259-4265, 2000.

J. D. Appleton, M. R. Cave, and J. Wragg, Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils, Sci. Total Environ. 435?, vol.436, pp.21-29, 2012.

A. Barsby, J. M. Mckinley, U. Ofterdinger, M. Young, M. R. Cave et al., Bioaccessibility of trace elements in soils in Northern Ireland, Sci. Total Environ, vol.433, pp.398-417, 2012.

N. Basta and R. Gradwohl, Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure, J. Soil Contam, vol.9, pp.149-164, 2000.

D. G. Beak, N. T. Basta, K. G. Schekel, and S. J. Traina, Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system, Environ. Sci. Technol, vol.40, pp.1364-1370, 2006.

L. T. Bonten, J. E. Groenenberg, L. Weng, and W. H. Van-riemsdijk, Use of speciation and complexation models to estimate heavy metal sorption in soils, Geoderma, vol.146, pp.303-310, 2008.

W. Brattin, J. Drexler, Y. Lowney, S. Griffin, G. Diamond et al., An in vitro method for estimation of arsenic relative bioavailability in soil, J. Toxicol. Environ. Health Part A, vol.76, pp.458-478, 2013.

N. Cruz, S. M. Rodriguez, D. Tavares, R. J. Monteiro, L. Carvahlo et al.,

E. Pereira and P. F. Römkens, Testing single extraction methods and in vitro tests to assess the, 2015.

A. Davis, M. V. Ruby, P. Goad, S. Eberle, and S. Chryssoulis, Mass balance on surface-bound mineralogic, and total lead concentrations as related to industrial aggregate bioaccessibility, Environ. Sci. Technol, vol.31, pp.37-44, 1997.

F. Degryse, K. Broos, E. Smolders, and R. Merckx, Soil solution concentration of Cd and Zn can be predicted with a CaCl2 extract, Eur. J. Soil Sci, vol.54, pp.149-157, 2003.

S. Denys, J. Caboche, K. Tack, G. Rychen, J. Wragg et al., In vivo validation of the Unified BARGE Method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils, Environ. Sci. Technol, vol.46, pp.6252-6260, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00963414

S. Denys, J. Caboche, K. Tack, and P. Delalain, Bioaccessibility of lead in high carbonate soils, J. Environ. Sci. Health A, vol.42, pp.1331-1339, 2007.
URL : https://hal.archives-ouvertes.fr/ineris-00963084

J. W. Drexler and W. J. Brattin, An in vitro procedure for estimation of lead relative bioavailability: with validation, Hum. Ecol. Risk Assess, vol.13, pp.383-401, 2007.

E. Girouard and G. J. Zagury, Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction, Sci. Total Environ, vol.407, 2009.

J. E. Groenenberg and S. Lofts, The use of assemblage models to describe trace element partitioning, speciation, and fate: a review, Environ. Toxicol. Chem, vol.33, pp.2181-2196, 2014.

J. E. Groenenberg, P. F. Römkens, R. N. Comans, J. Luster, T. Pampura et al., Transfer functions for solid solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relations for free metal ion activities and validation on independent data, Eur. J. Soil Sci, vol.61, pp.58-73, 2010.

C. Grøn and L. Andersen, Human bioaccessibility of heavy metals and PAH from soil, 2003.

, Technology Programme for Soil and Groundwater Contamination

. Iso/dis, Soil quality -Assessment of human exposure from ingestion of soil and soil material -Procedure for the estimation of the human bioaccessibility/bioavailability of metals in soil, 2016.

S. Jeong, H. S. Moon, and K. Nam, Differential in vitro bioaccessibility of residual As in a fieldaged former smelter site and its implication for potential risk, Sci. Total Environ. 463?, vol.464, pp.348-354, 2013.

A. L. Juhasz, J. Weber, E. Smith, R. Naidu, M. Rees et al., Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils, Environ. Sci. Technol, vol.43, pp.9487-9494, 2009.

A. L. Juhasz, E. Smith, J. Weber, M. Rees, A. Rofe et al., vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils, 2007.

, Chemosphere, vol.69, pp.69-78

M. E. Kelley, S. Brauning, R. Schoof, and M. V. Ruby, Assessing oral bioavailability of metals in soils, 2002.

E. J. Kim, J. C. Yoo, and K. Baek, Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation, Environ. Pollut, vol.186, pp.29-35, 2014.

A. E. Latawiec, P. Simmons, and B. J. Reid, Decision-makers' perspectives on the use of bioaccessibility for risk-based regulation of contaminated land, Environ. Int, vol.36, pp.383-389, 2010.

L. Bot, B. Gilles, E. Durand, S. Glorennec, and P. , Bioaccessible and quasi-total metals in soil and indoor dust, Eur. J. Mineral, vol.22, pp.651-657, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00657865

L. Bot, B. Arcelin, C. Briand, E. Glorennec, and P. , Sequential digestion for measuring leachable and total lead in the same sample of dust or paint chips by ICP-MS, J. Environ. Sci. Health A, vol.46, pp.63-69, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657880

S. W. Li, J. Li, H. B. Li, R. Naidu, and L. Q. Ma, Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction, J. Hazard. Mater, vol.295, pp.145-152, 2015.

Y. Li and M. K. Zhang, A comparison of physiologically based extraction test (PBET) and singleextraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils, Environ. Sci. Pollut. Res, vol.20, pp.3140-3148, 2013.

F. Madrid, M. Biasioli, and F. Ajmone-marsan, Availability and bioaccessibility of metals in fine particles of some urban soils, Arch. Environ. Con. Tox, vol.55, pp.21-32, 2008.

C. J. Mendoza, R. T. Garrido, R. C. Quilodrán, C. M. Segovia, and A. J. Parada, Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test, Chemosphere, vol.176, pp.81-88, 2017.

K. L. Mercer and J. E. Tobiason, Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO, Environ. Sci. Technol, vol.42, pp.3797-3802, 2008.

B. H. Mevik, R. Wehrens, and K. H. Liland, pls: Partial Least Squares and Principal Component Regression. R package version 2, 2019.

C. A. Ollson, I. Koch, P. Smith, L. D. Knopper, C. Hough et al., Addressing arsenic bioaccessibility in ecological risk assessment: a novel approach to avoid overestimating risk, Environ. Toxicol. Chem, vol.28, pp.668-675, 2009.

A. G. Oomen, A. Hack, M. Minekus, E. Zeijdner, G. Schoeters et al., Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants, Environ. Sci. Technol, vol.36, pp.3326-3334, 2002.

D. J. Paustenbach, The practice of exposure assessment: a state of the art review, J. Toxicol. Environ. Health B Crit. Rev, vol.3, pp.179-291, 2000.

A. Pelfrêne, S. Détriché, and F. Douay, Combining spatial distribution with oral bioaccessibility of metals in smelter-impacted soils: implications for human health risk assessment, Environ. Geochem. Hlth, vol.37, pp.49-62, 2015.

A. Pelfrêne, C. Waterlot, M. Mazzuca, C. Nisse, G. Bidar et al., Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France), Environ. Geochem. Hlth, vol.33, pp.477-493, 2011.

L. Poggio, B. Vr??aj, R. Schulin, E. Hepperle, and F. A. Marsan, Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy), Environ. Pollut, vol.157, pp.680-689, 2009.

P. Pouschat and G. J. Zagury, In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles, Environ. Sci. Technol, vol.40, pp.4317-4323, 2006.

A. P. Reis, C. Patinha, J. Wragg, A. C. Dias, M. Cave et al., Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon, Environ. Geochem. Hlth, vol.36, pp.867-881, 2014.

S. M. Rodrigues, N. Cruz, L. Carvalho, A. C. Duarte, E. Pereira et al., Evaluation of a single extraction test to estimate the human oral bioaccessibility of potentially toxic elements in soils: towards more robust risk assessment, Sci. Total Environ, vol.635, pp.188-202, 2018.

S. M. Rodrigues, N. Cruz, C. Coelho, B. Henriques, L. Carvalho et al., Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept, Environ. Pollut, vol.183, pp.234-242, 2013.

S. M. Rodrigues, B. Henriques, E. Ferreira-da-silva, M. E. Pereira, A. C. Duarte et al., Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part I -the role of key soil properties in the variation of contaminants reactivity, Chemosphere, vol.81, pp.1549-1559, 2010.

S. M. Rodrigues, B. Henriques, E. Ferreira-da-silva, E. Pereira, A. C. Duarte et al., Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part II -solid-solution partition relationships and ion activity in soil solutions, Chemosphere, vol.81, pp.1560-1570, 2010.

R. R. Rodriguez and N. T. Basta, An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media, Environ. Sci. Technol, vol.33, pp.642-649, 1999.

P. F. Römkens, H. Y. Guo, C. L. Chu, T. S. Liu, C. F. Chiang et al., Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solidsolution partitioning, J. Soils Sediments, vol.9, pp.216-228, 2009.

M. V. Ruby, R. Schoof, W. Brattin, M. Goldade, G. Post et al.,

W. Berti, M. Carpentier, D. Edwards, D. Cragin, and W. Chappell, Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment, Environ. Sci. Technol, vol.33, pp.3697-3705, 1999.

M. V. Ruby, A. Davis, R. Schoof, and S. S. Eberle, Estimation of lead and arsenic bioavailability using a physiologically based extraction test, Environ. Sci. technol, vol.30, 1996.

M. V. Ruby, A. Davis, T. E. Link, R. Schoof, R. L. Chaney et al., Development of an in vitro screening-test to evaluate the in vivo bioaccessibility of ingested mine-waste lead, Environ. Sci. Technol, vol.26, pp.1242-1248, 1993.

P. L. Smedley and D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem, vol.17, pp.517-568, 2002.

E. Smith, R. Naidu, and A. M. Alston, Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils, J. Environ. Qual, vol.28, pp.1719-1726, 1998.

W. Tang, Q. Xia, B. Shan, and J. C. Ng, Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based in four in vitro gastrointestinal simulation models, Sci. Total Environ. 631?, vol.632, pp.1582-1589, 2018.

E. Tipping, J. Rieuwerts, G. Pan, M. R. Ashmore, S. Lofts et al., The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales, Environ. Pollut, vol.125, pp.213-225, 2003.

, Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods, OSWER, vol.9285, pp.7-80, 2007.

, Validation assessment of in vitro arsenic bioaccessibility assay for predicting relative bioavailability of arsenic in soils and soil-like materials at superfund sites, OLEM, vol.9355, pp.4-29, 2017.

C. Waterlot, G. Bidar, C. Pruvot, and F. Douay, Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils, Talanta, vol.98, pp.185-196, 2012.

C. Waterlot, F. Douay, and A. Pelfrêne, Chemical availability of Cd, Pb and Zn in anthropogenically polluted soil: assessing the geochemical reactivity and oral bioaccessibility, Pedosphere, vol.27, pp.616-629, 2017.

W. W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi et al., Arsenic fractionation in soils using an improved sequential extraction procedure, Anal. Chim. Acta, vol.436, pp.309-323, 2001.

J. Wragg, M. Cave, and P. Nathanail, A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J. Environ. Sci. Health A, vol.42, pp.1303-1315, 2007.

Q. Xia, D. Lamb, C. Peng, and J. C. Ng, Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE method, Environ. Sci. Pollut. Res, vol.24, pp.5585-5594, 2017.

S. Figure, Bioaccessibility of As in gastric (As-G) and gastrointestinal (As-GI) phases measured by UBM versus predicted values by HCl for model validation (n = 61

S. Figure, Bioaccessibility of Cd in gastric (Cd-G) and gastrointestinal (Cd-GI) phases measured by UBM versus predicted values by CA (when considering the two groups according to their carbonate contents), EDTA, and HCl for model validation

S. Figure, Bioaccessibility of Pb in gastric (Cd-G) and gastrointestinal (Cd-GI) phases measured by UBM versus predicted values by CA, EDTA, and HCl for model validation (n = 61