R. J. Swartz, C. Schwartz, E. Basch, L. Cai, D. L. Fairclough et al., SAMSI Psychometric Program Longitudinal Assessment of Patient-Reported Outcomes Working Group. The king's foot of patient-reported outcomes: current practices and new developments for the measurement of change, Qual Life Res, vol.20, issue.8, pp.1159-67, 2011.

J. Greenhalgh, The applications of PROs in clinical practice: what are they, do they work, and why?, Qual Life Res, vol.18, issue.1, pp.115-138, 2009.

R. J. Willke, L. B. Burke, and P. Erickson, Measuring treatment impact: a review of patient-reported outcomes and other efficacy endpoints in approved product labels, Controlled Clin Trials, vol.25, issue.6, pp.535-52, 2004.

M. L. Thomas, The value of item response theory in clinical assessment: a review, Assessment, vol.18, issue.3, pp.291-307, 2011.

E. De-bock, J. Hardouin, M. Blanchin, L. Neel, T. Kubis et al., Assessment of score-and rasch-based methods for group comparison of longitudinal patient-reported outcomes with intermittent missing data (informative and non-informative), Qual Life Res, vol.24, issue.1, pp.19-29, 2015.

T. H. Nguyen, H. Han, M. T. Kim, and K. S. Chan, An introduction to item response theory for patient-reported outcome measurement, Patient, vol.7, issue.1, pp.23-35, 2014.

B. B. Reeve, R. D. Hays, C. Chang, and E. M. Perfetto, Applying item response theory to enhance health outcomes assessment, Qual Life Res, vol.16, issue.S1, pp.1-3, 2007.

M. Calvert, J. Blazeby, D. G. Altman, D. A. Revicki, D. Moher et al., Reporting of patient-reported outcomes in randomized trials: the CONSORT PRO extension, J Am Med Assoc, vol.309, issue.8, pp.814-836, 2013.

M. Brundage, J. Blazeby, D. Revicki, B. Bass, H. De-vet et al., Patient-reported outcomes in randomized clinical trials: development of ISOQOL reporting standards, Qual Life Res, vol.22, issue.6, pp.1161-75, 2013.

D. A. Revicki, P. A. Erickson, J. A. Sloan, A. Dueck, H. Guess et al., Interpreting and reporting results based on patient-reported outcomes, Value Health, vol.10, pp.116-140, 2007.

V. Sébille, J. Hardouin, L. Néel, T. Kubis, G. Boyer et al., Methodological issues regarding power of classical test theory (CTT) and item response theory (IRT)-based approaches for the comparison of patient-reported outcomes in two groups of patients-a simulation study, BMC Med Res Methodology, vol.10, p.24, 2010.

R. Holman, C. Glas, and R. J. De-haan, Power analysis in randomized clinical trials based on item response theory, Controlled Clin Trials, vol.24, issue.4, pp.390-410, 2003.

C. Glas, H. Geerlings, M. Van-de-laar, and E. Taal, Analysis of longitudinal randomized clinical trials using item response models, Contemporary Clin Trials, vol.30, issue.2, pp.158-70, 2009.

G. Rasch, Probabilistic Models for Some Intelligence and Attainment Tests, 1980.

G. H. Fischer and I. W. Molenaar, Rasch Models: Foundations, Recent Developments, and Applications, 1995.

J. Hardouin, S. Amri, M. Feddag, and V. Sébille, Towards power and sample size calculations for the comparison of two groups of patients with item response theory models, Stat Med, vol.31, pp.1277-90, 2012.

M. Blanchin, J. Hardouin, F. Guillemin, B. Falissard, and V. Sébille, Power and sample size determination for the group comparison of patient-reported outcomes with rasch family models, PLoS ONE, vol.8, issue.2, p.57279, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01797311

M. Feddag, M. Blanchin, J. Hardouin, and V. Sébille, Power analysis on the time effect for the longitudinal rasch model, J Appl Meas, vol.15, issue.3, pp.292-301, 2014.

M. Feddag, V. Sébille, M. Blanchin, and J. Hardouin, Estimation of parameters of the rasch model and comparison of groups in presence of locally dependent items, J Appl Meas, 2014.

A. Guilleux, M. Blanchin, J. Hardouin, and V. Sébille, Power and sample size determination in the rasch model: evaluation of the robustness of a numerical method to non-normality of the latent trait, PLoS ONE, vol.9, issue.1, p.83652, 2014.

R. D. Bock and M. Aitkin, Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm, Psychometrika, vol.46, issue.4, pp.443-59, 1981.

R. G. Tedeschi and L. G. Calhoun, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution, J Traumatic Stress, vol.9, issue.3, pp.455-71, 1996.